AF9 YEATS Domain Links Histone Acetylation to DOT1L-Mediated H3K79 Methylation

نویسندگان

  • Yuanyuan Li
  • Hong Wen
  • Yuanxin Xi
  • Kaori Tanaka
  • Haibo Wang
  • Danni Peng
  • Yongfeng Ren
  • Qihuang Jin
  • Sharon Y.R. Dent
  • Wei Li
  • Haitao Li
  • Xiaobing Shi
چکیده

The recognition of modified histones by "reader" proteins constitutes a key mechanism regulating gene expression in the chromatin context. Compared with the great variety of readers for histone methylation, few protein modules that recognize histone acetylation are known. Here, we show that the AF9 YEATS domain binds strongly to histone H3K9 acetylation and, to a lesser extent, H3K27 and H3K18 acetylation. Crystal structural studies revealed that AF9 YEATS adopts an eight-stranded immunoglobin fold and utilizes a serine-lined aromatic "sandwiching" cage for acetyllysine readout, representing a novel recognition mechanism that is distinct from that of known acetyllysine readers. ChIP-seq experiments revealed a strong colocalization of AF9 and H3K9 acetylation genome-wide, which is important for the chromatin recruitment of the H3K79 methyltransferase DOT1L. Together, our studies identified the evolutionarily conserved YEATS domain as a novel acetyllysine-binding module and established a direct link between histone acetylation and DOT1L-mediated H3K79 methylation in transcription control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin.

The Super Elongation Complex (SEC), containing transcription elongation activators/coactivators P-TEFb, ELL2, AFF4/1, ENL, and AF9, is recruited by HIV-1 Tat and mixed lineage leukemia (MLL) proteins to activate the expression of HIV-1 and MLL-target genes, respectively. In the absence of Tat and MLL, however, it is unclear how SEC is targeted to RNA polymerase (Pol) II to stimulate elongation ...

متن کامل

Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex.

Mutations of leukemia-associated AF9/MLLT3 are implicated in neurodevelopmental diseases, such as epilepsy and ataxia, but little is known about how AF9 influences brain development and function. Analyses of mouse mutants revealed that during cortical development, AF9 is involved in the maintenance of TBR2-positive progenitors (intermediate precursor cells, IPCs) in the subventricular zone and ...

متن کامل

The Histone H3K79 Methyltransferase Dot1L Is Essential for Mammalian Development and Heterochromatin Structure

Dot1 is an evolutionarily conserved histone methyltransferase specific for lysine 79 of histone H3 (H3K79). In Saccharomyces cerevisiae, Dot1-mediated H3K79 methylation is associated with telomere silencing, meiotic checkpoint control, and DNA damage response. The biological function of H3K79 methylation in mammals, however, remains poorly understood. Using gene targeting, we generated mice def...

متن کامل

Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia.

Mixed-lineage leukemia (MLL) fusions are potent oncogenes that initiate aggressive forms of acute leukemia. As aberrant transcriptional regulators, MLL-fusion proteins alter gene expression in hematopoietic cells through interactions with the histone H3 lysine 79 (H3K79) methyltransferase DOT1L. Notably, interference with MLL-fusion cofactors like DOT1L is an emerging therapeutic strategy in th...

متن کامل

DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions.

Methylation of H3K79 is associated with chromatin at expressed genes, though it is unclear if this histone modification is required for transcription of all genes. Recent studies suggest that Wnt-responsive genes depend particularly on H3K79 methylation, which is catalyzed by the methyltransferase DOT1L. Human leukemias carrying MLL gene rearrangements show DOT1L-mediated H3K79 methylation and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2014